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Manufacturing automation has been under intensive study due to increased

productivity. This research effort presents an algorithm on scheduling of an

AMR that traverses desired locations on a manufacturing floor. The

algorithm enables the AMR to find an efficient tour within the time

constraint, using which it can travel through all coordinates before

returning to the starting point or a specified stop, within a stipulated time

of thirty seconds on a PC.

With the number of AMRs increasing, how to optimally schedule them in a

timely manner such that a large school of AMRs can finish all assigned

tasks within the shortest time also presents a significant challenge. We

introduce a novel two-step algorithm for fast scheduling of AMRs that

perform prioritized tasks involving transportation of materials from a pick-

up point to a drop-off point on the factory floor.

The ultimate goal of this research is to develop a development platform

that can generate an optimal path to route the AMR in real time

considering both the shortest route and the task priority.

ABSTRACT

INTRODUCTION AND PROBLEM FORMULATION

For problem (a), we propose the min-min algorithm:

Min-Min Algorithm with Maximum Triangle Initialization

Given a set of n points 𝑉𝑁 in a symmetric Euclidean space, the distance

between any two points is given by 𝑑 𝑡𝑖 , 𝑡𝑗 , 𝑡𝑖 , 𝑡𝑗 ∈ 𝑉𝑁. 𝑇𝑁 is defined as a

complete tour, 𝑡1, 𝑡2, … , 𝑡𝑁 , 𝑡1 , 𝑡𝑖 ∈ 𝑉𝑁, and 𝐷 𝑇𝑁 is the tour length.

The proposed algorithm can then be broken down into three parts:

1. Selection of the Initial Triangle [1]:

a) Search for 𝑡1, 𝑡2 ∈ 𝑉𝑁 such that 𝑑 𝑡1, 𝑡2 = max
𝑡𝑖,𝑡𝑗 ∈𝑉

𝑁
𝑡𝑖 , 𝑡𝑗 .

b) From the remaining points, select 𝑡3 ∈ 𝑉 𝑁−2 such that 𝐷(𝑇3) =
max[𝑑(𝑡1, 𝑡3) + 𝑑(𝑡2, 𝑡3) + 𝑑(𝑡1, 𝑡2)].

2. Min-Min Iterative Addition: For 𝑖 = 3, 4,⋯ ,𝑁 − 1

a) In 𝑇𝑖, for each edge, {𝑡𝑘 , 𝑡𝑘+1}, 𝑘 = 1, 2,⋯ , 𝑖, 𝑡 𝑖+1 = 𝑡1, select a

point, 𝑣𝑗 ∈ 𝑉 𝑁−𝑖 , such that the disturbance introduced is minimized,

i.e., Δ 𝑡𝑘 , 𝑣𝑗 = min
𝑣𝑙∈ 𝑉

𝑁−𝑖
[𝑑(𝑡𝑘 , 𝑣𝑙) + 𝑑(𝑡 𝑘+1 , 𝑣𝑙) − 𝑑(𝑡𝑘 , 𝑡 𝑘+1 )].

b) Select {𝑡𝑚, 𝑡 𝑚+1 } and 𝑣𝑙 such that Δ 𝑡𝑚, 𝑣𝑙 = min
𝑡𝑘∈ 𝑇

𝑖
[Δ(𝑡𝑘 , 𝑣𝑙)].

c) Add point 𝑣𝑙 in tour 𝑇 𝑖+1 between points 𝑡𝑚, 𝑡 𝑚+1 .

3. Add pairwise exchange heuristics.

ALGORITHM

For problem (a), results are presented below:

(A) Shortest Tour Ending at Origin

Results on various data sets for the proposed algorithm are presented, and

the performance of the algorithm is compared to other commonly used

algorithms such as the insertion algorithms by Rosenkrantz et al. [2] and

the nearest neighbor heuristic [3].

RESULTS

RESULTS (contd.)

(B) Shortest Tour with Fixed/

Free Ends

The proposed algorithm can be

extended to tours with arbitrary

starting and ending points. An

example of using the proposed

method with 101 data points is

shown in Fig. 8, where the starting

location, A, and ending location, B,

are marked by green and red

markers respectively. One can see

that the algorithm enables the AGV

to travel to the points with A and B

as the two defined end points.

The research effort focuses on the following problems:

a) Given a large set of coordinates (~1000) on a manufacturing floor and

the cost of travel, under arbitrary starting and ending points, find the

most efficient schedule for an AMR, such that it travels to all desired

points without repetitions. This problem can be interpreted as a

variation of the Traveling Salesman Problem (TSP), mathematically

defined as follows:

min
𝑡𝑖∈ 𝑉

𝑁


𝑖=1

𝑁

𝑡 𝑖+1 − 𝑡𝑖
2

subject to 𝑡𝑖 ≠ 𝑡𝑗 , ∀ 𝑗 = 1, 2, … ,𝑁, 𝑗 ≠ 𝑖

𝑡 𝑁+1 = 𝑡1
where 𝑇 = 𝑡1, 𝑡2, ⋯ , 𝑡𝑁 , 𝑡1 is a tour starting and ending at the same

point, and 𝑉𝑁 is the point set of size 𝑁.

b) Scheduling of prioritized tasks for multiple AMRs within a

manufacturing facility in a timely manner. Specifically, we focus on

problems where 20 to 40 AMRs need to travel to about 1000 points to

complete prioritized tasks. The prioritized tasks involve transporting

materials from a specified pick-up location to a target drop-off location.

Here, each task is associated with a start point s, an end point e, and a

priority value p. Because the task is predefined on a ‘point space' and

the start and end points are not interchangeable, the search of an

optimal scheduling is asymmetric.

Minimum-Time Scheduling of Autonomous Mobile Robots

The results for the proposed algorithm and the optimal solution for a 60-

point data set is shown in Fig. 6 and Fig. 7.

Fig. 6. Solution for 60-point data 

set using proposed algorithm

Fig. 7 Optimal solution for 60-

point data set

Fig. 8. Solution for 101-point data set with 

fixed ends using proposed algorithm

Fig. 1. Example of AGV routing for drilling on a factory floor for 

assembly line setup using a TSP solution

Fig. 3. Evolution of min-min and Yatsenko’s [1] algorithms
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For problem (b), we propose a novel two-stage algorithm:

(A) Asymmetric Clustering

Priority Separation

MKM Algorithm

The objective of clustering is to find 𝑘 clusters within a priority level such

that if a pair of tasks is chosen from the same cluster, the sum of the cost of

travel from the end point of the first task to the start point of the second

task, and vice versa, should be small relative to tasks in other clusters.

Mathematically, the clustering problem can be defined as follows:

𝐽 𝜇, 𝐿 =

𝑖=1

|Δ|

𝑑𝛿𝑖𝜇𝑗 𝐿𝑖

2

where 𝜇 is the set of cluster ‘centroids’, representing a ‘center’ for that

particular cluster. 𝐿 is the cluster label of each task in the set, Δ is the entire

task set, and 𝜇𝑗(𝐿𝑖) is the ‘centroid’ of the cluster to which the task 𝛿𝑖 ∈ Δ

is assigned.

Cluster Recombination

Each of the clusters is represented by its pseudo-task centroid. We combine

them to form 𝑘 final clusters, each containing three separate clusters, one

from each priority level.

To ensure that there is no

concentration of tasks of a single

priority assigned to a single

AMR, we define the priority of

each task as a 3rd coordinate.

Therefore, for each of the

priority values, all tasks of that

priority value are separated into

𝑘 clusters using the clustering

algorithm described later, after

which the ‘centroids’ of these

clusters are matched across

different priority values.
Fig. 4. Priority separation

ALGORITHMS (contd.)

(B) Task Ordering for Single AMR

Once the task set has been clustered, each cluster can be handled by a

single AMR. Using the task distance matrix, a new model based learning

technique is proposed for task ordering with priorities for a single AMR.

Model Structure

The model structure consists of

two recurrent neural network

sections with LSTM (Long

Short-Term Memory) units. The

first section of the model is the

encoder network, into which the

task list for each vehicle is

inputted one at a time. It is

followed by the decoder

network

Fig. 5. LSTM Cell

which uses the encoded form of the task list to generate a

sequential list of tasks to be carried out by that particular vehicle.

Reward Function

The reward function for training the parameters of the neural network (Φ)

is the negative of the priority adjusted cost between the tasks in the task

list, plus the negative of the travel cost between the last task and the depot

(without priority adjustment) as the vehicle has to return to the depot.

𝑅 Ω = −

𝑖=1

n−1

𝐷𝑡𝑎𝑠𝑘𝑠,𝑝,ΩiΩ𝑖+1
− 𝐷𝑡𝑎𝑠𝑘𝑠,ΩnΩ1

The expected value of the reward is 𝐽 Φ = Ε𝑝Φ Ω 𝑅 Ω where 𝑝Φ(Ω) is

the probability of getting the task sequence Ω given the parameter set Φ,

and takes into account the recurrent network. Policy gradient methods can

be used to maximize expected rewards, using the REINFORCE algorithm.

For problem (b), results are presented below:

(A) Asymmetric Clustering

The MKM algorithm is compared to the asymmetric 𝐾-medoid method

(AKMD) and the results are shown in Fig. 9.

(B) Task Ordering

Results from the learning technique are presented in Fig. 10 and Fig. 11.

Fig. 9. Comparison of MKM with AKMD methods 

Fig. 10. Test Case for ED Network 

Fig. 11. ED vs Simulated Annealing for different test sets

c) Hardware setup for verification and

validation of the designed algorithms.

The prototype built for testing

purposes is a 4-wheel ground vehicle

designed for warehouse applications

in which small cargo up to 5kg must

be transported quickly and reliably. A

photo of the prototype is shown in

Fig. 2. Fig. 2. AMR designed for use in testing 
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